讨论了矩阵方程(AX,XB)=(C,D)在线性流形上的次对称解及其最佳逼近.利用矩阵对构成新矩阵的奇异值分解导出了在线性流形上‖AX-C‖2+‖XB-D‖2=min的最小二乘解及方程(AX,XB)=(C,D)存在次对称解的充分必要条件,并且给出了一般解的表达式及其它们的最佳逼近.
This paper discussed the linear matrix equation(AX,XB)=(C,D) on linear manifold for the symmetric and its optimal approximation solution.The necessary and sufficient conditions for least-square solution of ‖AX-C‖2+‖XB-D‖2=min on linear manifolds for the symmetric solution and sub-symmelric solution of the equation(AX,XB)=(C,D) are presented.Moreover,when solution sets of the above problems are nonempty,their general expressions are provided.The optimal approximation solutions in the solution set to a given matrix are obtained.