构造行波解是研究非线性偏微分方程的一个重要分支.主要描述了使用修改的(G’/G)一展开法求解非线性偏微分方程的过程.借助符号计算系统Maple软件,将此方法应用在求解Sharma-Tasso-01ver方程中,获得了该方程的一些新的行波解,例如u1、u2、u4和u5.这些新的结果有助于理解Sharma-Tasso-01ver方程的物理意义.
Constructi0n of traveling wave solutions is an important branch to study nonlinear partial differential equations. In this paper, the new modified '(G'/G)-expansion method is described. With the aid of symbolic computation system-Maple, we choose Shar- ma-Tasso-Olver equation to illustrate the validity and advantages of this method. As a result, mmay new travelling wave solutions are obtained, such as u1 , u2, u4 and us. These new results can help us to understand the physical sense of the Sharma-Tasso-Olver equa- tion.