位置:成果数据库 > 期刊 > 期刊详情页
基于并列卷积神经网络的超分辨率重建
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]认知无线电与信息处理省部共建教育部重点实验室桂林电子科技大学,广西桂林541004, [2]桂林电子科技大学信息与通信学院,广西桂林541004
  • 相关基金:国家自然科学基金资助项目(61362021,61661017); 广西自然科学基金资助项目(2013GXNSFDA019030,2014GXNSFDA118035); 认知无线电与信号处理重点实验室主任基金资助项目(CRKL160104); 广西科技创新能力与条件建设计划项目(桂科能1598025-21); 桂林科技开发项目(20150103-6); 桂林电子科技大学研究生教育创新计划项目(YJCXS201534)
中文摘要:

为提取更多有效特征并提高模型训练的收敛速度,提出一种基于并列卷积神经网络的超分辨率重建方法。该网络由两路不同结构的网络组成:一路为简单的残差网络,其优化残差映射比原始的映射更容易实现;另一路为增加了非线性映射的卷积神经网络,增强了网络的非线性能力。随着并行网络结构的复杂化,收敛速度慢成为突出问题。针对这个问题,在卷积层后添加正则化处理,以简化模型参数、增强特征拟合能力,最终达到加快收敛的目的。实验结果表明,与基于深度卷积神经网络算法相比,该网络结构收敛速度更快,主观视觉效果更好,峰值信噪比(PSNR)平均提高了0.2dB。

英文摘要:

To extract more effective features and speed up the convergence of model training, a super-resolution reconstruction algorithm based on parallel convolution neural network was proposed. The network consists of two different network structures, one is a simple residual network structure, which has a easier optimal residual mapping than the original one; the other is a convolutional neural network with nonlinear mapping, which can increase the non-linearity of the network.As the complexity of the parallel network structure, the convergence speed is the key issue. Aiming at this problem, the Local Response Normalization(LRN) layer was added to the convolution layers to simplify the model parameters and enhance the feature fitting ability, thus accelerating the convergence. Experimental results show that, compared with algorithms based on deep convolutional neural network, the proposed method accelerates the convergence, improves the visual quality, and increases Peak Signal-to-Noise Ratio(PSNR) at least 0. 2 dB.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679