位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯网络的海量数据多维分类学习方法研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]重庆医科大学附属第一医院信息中心,重庆400016, [2]西南石油大学计算机科学学院,成都610500
  • 相关基金:国家自然科学基金资助项目(61170306)
中文摘要:

为了提高多维分类的执行效率,同时保持高的预测准确性,提出了一种基于贝叶斯网络的多维分类学习方法。将多维分类问题描述为条件概率分布问题。根据类别向量之间的依赖关系建立了条件树贝叶斯网络模型。最后,根据训练数据集对条件树贝叶斯网络模型的结构和参数进行学习,并提出了一种多维分类预测算法。大量的真实数据集实验表明,提出的方法与当前最好的多维分类算法MMOC相比,在保持高准确性的同时将模型的训练时间降低了两个数量级。因此,提出的方法更适用于海量数据的多维分类应用中。

英文摘要:

In order to improve the execution efficiency of multi-dimensional classification while preserving high prediction accuracy,this paper proposed a Bayesian net based multi-dimensional classification learning algorithm. Firstly,it described the problem of multi-dimensional classification as the problem of conditional probability distribution. Secondly,it built a conditional tree Bayesian net model according to the dependence of class vector. Finally,it learnt the structure and parameters of the conditional tree model based on the training data set,and proposed a multi-dimensional classification prediction algorithm.Massive experiments on real dataset show that,compared with the state-of-the-art multi-dimensional classification algorithm MMOC,the proposed algorithm improves the execution efficiency of multi-dimensional classification while preserving high prediction accuracy. So,the proposed algorithm is more suitable in multi-dimensional classification for massive data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049