位置:成果数据库 > 期刊 > 期刊详情页
基于潜在特征的重叠社团识别算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]甘肃民族师范学院计算机科学系,甘肃合作747000, [2]湖北大学计算机与信息工程学院,武汉430062
  • 相关基金:国家自然科学基金资助项目(61170306);湖北省自然科学基金面上项目(2014CFB536);湖北省国际交流与合作项目(2012IHA0140);湖北省科技重大支撑项目(2014BAA089);湖北大学校自然科学基金资助项目(530-095183);甘肃民族师范学院院长基金资助项目(11-16).
中文摘要:

针对标签空间的指数增长这一问题,提出了一种基于潜在特征的重叠社团识别算法。首先,提出了一种包含重叠社团的网络产生式模型。根据该产生式模型,通过最大化目标网络的产生概率来推导网络中节点的潜在特征,并给出了优化目标函数。然后,通过将网络诱导为二部图,分析得出了潜在特征个数的下届,并据此对标签空间进行优化。实验表明,提出的重叠社团识别算法与BigClam算法相比较,在保持运行效率和查准率基本不变的前提下,可以明显提高检索结果的召回率。该算法可以有效地应对社团识别中标签空间的指数增长。

英文摘要:

In order to solve the problem of exponential increase of label space, an overlapping community discovery algorithm based on latent feature was proposed. Firstly, a generative model for network including overlapping communities was proposed. And based on the proposed generative model, an optimal object function was presented by maximizing the generative probability of the whole network, which was used to infer the latent features for each node in the network. Next, the network was induced into a bipartite graph, and the lower bound of feature number was analyzed, which was used to optimize the object function. The experiments show that, the proposed overlapping community discovering algorithm can improve the recall greatly while keeping the precision and execution efficiency unchanged, which indicates that the proposed algorithm is effective with the exponential increase of label space.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679