Banach压缩映象原理,得到下列一阶非线性中立型泛函微分方程[x(t)+a(t)z(t-r(t))]'+f(t,z(t-σ21)),z(t-σ1),x(t-σn))-O无穷多个有界正解的存在性.此外,还给出了这些有界正解的迭代逼近序列以及相应的误差估计.文章结果推广并改进了已有文献中的相应结果.
Using the Banach contraction mapping theorem, to prove the existence of un countably many bounded positive solutions for the first order nonlinear neutral functional differ ential equation[x(t)+a(t)z(t-r(t))]'+f(t,z(t-σ21)),z(t-σ1),x(t-σn))-O In addition,to give not only the iterative approximation of the corresponding positive solutions, but also the error estimate. Our results generalize and improve some existing results.