利用Banach压缩映象原理,研究下列一阶非线性中立型时滞微分方程d/(dt)[x(t)]+c(t)x(t-τ1)+d(t)x(t-τ2)]+h(t)f(t,x(t-σ1(t)),x(t-σ2(t)),…,x(t-σk(t)))=g(t)的非振动解的存在性,并获得了相应非振动解的迭代逼近序列.
Using the Bananch contraction mapping theorem,the class of firet-order nonlinear neutral delay differential equation are studied d/(dt)+c(t)x(t-τ1)+d(t)x(t-τ2)]+ h(t)f(t,x(t-σ1(t)),x(t-σ2(t)),…,x(t-σk(t)))=g(t) and the sufficieut conditions for the existence of nonoscillatory solutions.In addition,iterative approximation sequences of corresponding nonoscillatory soultions are obtained.