机载紫外DOAS成像光谱仪通过获取大气与地表的折射或散射的紫外光辐射,监测大气痕量气体的分布与变化,其电子学部件的重要组成部分为CCD成像电路。采用帧转移型面阵CCD-47—20为图像传感器,以现场可编辑门阵列(FPGA)为核心控制器的成像电路模块,设计并实现了一套完整的机载紫外光谱仪成像系统。CCD成像电路完成包括CCD驱动时序电路、CCD数据采集电路,接收CCD模拟图像信号产生数字图像信号,将数字图像信号通过差分芯片驱动以低压差分信号(LVDS)传输给机载通讯系统等功能。讨论了机载紫外成像光谱仪的设计过程,并重点讨论了CCD成像电路的设计过程。设计的机载紫外DOAS成像光谱仪系统成像分辨率为0.286。。实验证明满足大气污染气体的观测需求。
Airborne ultraviolet imaging DOAS (Differential Optical Absorption Spectroscopy) spectrometer monitors the distribution and changes of atmospheric trace gases by obtaining the UV radiation of atmosphere and surface reflection or scattering. In this spectrometer, the CCD imaging circuit is the core of electronic device. A complete system was designed and implemented by using frame transfer area array CCD-47-20. Field-Programmable Gate Array (FPGA) was adopted as the core controller of the CCD imaging circuit, which generated CCD driving sequences, CCD data acquisition, received and converted CCD analog imaging signal to digital signal. CCD digital imaging signal was drove by differential line driver and then acquired by the airborne communication system in low voltage differential signaling (LVDS) format. The design and implementation of the circuit was described, and the design process of the CCD imaging circuit was mainly discussed. The imaging resolution of airborne ultraviolet imaging DOAS spectrometer monitoring is 0.286°. The experiments show that the requirements of polluting gases observation can be satisfied.