欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Solving Two-Point Boundary value Problems of Fractional Differential Equations by Spline Collocation
期刊名称:International Journal of Modeling, Simulation,and
时间:0
页码:117-132
语言:英文
相关项目:离散约束力学系统的Lie对称性和保对称性算法研究
作者:
Min Li|Ning-Ming Nie|Salvador Jiménez|Yan-Min Zhao|Xiang-Tao Liu|Yi-Fa Tang|Luis Vázquez|
同期刊论文项目
离散约束力学系统的Lie对称性和保对称性算法研究
期刊论文 25
同项目期刊论文
SolvingTwo-Point Boundary Value Problems of Fractional Differential Equations With Riemann-Liouvill
完整约束力学系统保Lie对称性差分格式
Implementing Arbitrarily High-Order Symplectic Methods Via Krylov Defered Correction Technique
Non-Convexity of the Dimension Function for Sierpiński Pedal Triangles
The form invariance and the Hojman conserved quantities for Hamilton systems
Noether symmetry and the Hojman conserved quantity of the Kepler equation
Features of inflow of a Liquid to a Chink in the Cracked Deformable Layer
关于Kepler方程的对称性
Multi-Symplectic Wavelet Collocation Method for the Nonlinear Schrödinger Equation and the Cama
Hénon-Heiles 系统的Noether 对称性与Noether守恒量
Noether's theory of Lagrange systems in discrete case
Hojman's Theorem of the third-order ordinary diferential equation
Sympletic discretization for spectral element solution of Maxwell's equations
离散非保守系统的Lie对称性
矢量波动方程的时空高阶方法
并行多重网格光滑子JGS与PGS的性能比较
基于融合策略的非下采样Contourlet域SAR图像去噪与仿真分析
Kepler方程的Noether对称性与Hojman守恒量
解Riemann-Liouville分数阶导数微分方程两点边值问题
H·non-Heiles系统的Noether对称性与Hojman守恒量
Hojman's theorem of the third-order ordinary differential equation
THE FORM INVARIANCES AND THE HOJMAN CONSERVED QUANTITIES FOR HAMILTON SYSTEMS