欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Non-Convexity of the Dimension Function for Sierpiński Pedal Triangles
期刊名称:Fractals
时间:0
页码:191-195
语言:中文
相关项目:离散约束力学系统的Lie对称性和保对称性算法研究
作者:
Yi-Fa Tang|Jiu Ding|
同期刊论文项目
离散约束力学系统的Lie对称性和保对称性算法研究
期刊论文 25
同项目期刊论文
SolvingTwo-Point Boundary Value Problems of Fractional Differential Equations With Riemann-Liouvill
完整约束力学系统保Lie对称性差分格式
Implementing Arbitrarily High-Order Symplectic Methods Via Krylov Defered Correction Technique
The form invariance and the Hojman conserved quantities for Hamilton systems
Solving Two-Point Boundary value Problems of Fractional Differential Equations by Spline Collocation
Noether symmetry and the Hojman conserved quantity of the Kepler equation
Features of inflow of a Liquid to a Chink in the Cracked Deformable Layer
关于Kepler方程的对称性
Multi-Symplectic Wavelet Collocation Method for the Nonlinear Schrödinger Equation and the Cama
Hénon-Heiles 系统的Noether 对称性与Noether守恒量
Noether's theory of Lagrange systems in discrete case
Hojman's Theorem of the third-order ordinary diferential equation
Sympletic discretization for spectral element solution of Maxwell's equations
离散非保守系统的Lie对称性
矢量波动方程的时空高阶方法
并行多重网格光滑子JGS与PGS的性能比较
基于融合策略的非下采样Contourlet域SAR图像去噪与仿真分析
Kepler方程的Noether对称性与Hojman守恒量
解Riemann-Liouville分数阶导数微分方程两点边值问题
H·non-Heiles系统的Noether对称性与Hojman守恒量
Hojman's theorem of the third-order ordinary differential equation
THE FORM INVARIANCES AND THE HOJMAN CONSERVED QUANTITIES FOR HAMILTON SYSTEMS