位置:成果数据库 > 期刊 > 期刊详情页
矢量波动方程的时空高阶方法
  • ISSN号:0253-2395
  • 期刊名称:《山西大学学报:自然科学版》
  • 时间:0
  • 分类:O241[理学—计算数学;理学—数学]
  • 作者机构:[1]许昌学院数学科学学院,河南许昌461000, [2]中国科学院数学与系统科学研究院计算数学与科学工程计算研究所,北京100190, [3]中国科学院研究生院,北京100190
  • 相关基金:国家自然科学基金(10672143;10872037); 河南省教育厅自然科学基金(2009A110017)
中文摘要:

文章将Gauss-Lobatto-Legendre多项式的高阶矢量谱元方法应用于矢量波动方程.由于矢量波动方程可以表示为一个无穷维Hamilton系统且经空间上的有限元方法离散后是一有限维Hamilton系统,利用4阶辛分块的Runge-Kutta方法来求解该有限维Hamilton系统,以期保持系统整体的能量和结构.

英文摘要:

The high-order vector SEM based on Gauss-Lobatto-Legendre(GLL)polynomials is applied to vector wave equation.Since the vector wave equation can be denoted as an infinite-dimensional Hamiltonian system which will become a finite-dimensional Hamiltonian system by the finite element discretization on spatial direction,we adopt 4th-order symplectic partitioned Runge-Kutta(SPRK)method to solve the finite-dimensional Hamiltonian system for conserving total energy and structure of the system.

同期刊论文项目
期刊论文 60 会议论文 3 著作 1
同项目期刊论文
期刊信息
  • 《山西大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:山西省教育厅
  • 主办单位:山西大学
  • 主编:杨斌盛
  • 地址:太原市坞城路92号
  • 邮编:030006
  • 邮箱:xbbjb@sxu.edu.cn
  • 电话:0351-7010455
  • 国际标准刊号:ISSN:0253-2395
  • 国内统一刊号:ISSN:14-1105/N
  • 邮发代号:22-42
  • 获奖情况:
  • 边疆七年获山西省一级期刊荣誉(1993-1999)
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5651