文章将Gauss-Lobatto-Legendre多项式的高阶矢量谱元方法应用于矢量波动方程.由于矢量波动方程可以表示为一个无穷维Hamilton系统且经空间上的有限元方法离散后是一有限维Hamilton系统,利用4阶辛分块的Runge-Kutta方法来求解该有限维Hamilton系统,以期保持系统整体的能量和结构.
The high-order vector SEM based on Gauss-Lobatto-Legendre(GLL)polynomials is applied to vector wave equation.Since the vector wave equation can be denoted as an infinite-dimensional Hamiltonian system which will become a finite-dimensional Hamiltonian system by the finite element discretization on spatial direction,we adopt 4th-order symplectic partitioned Runge-Kutta(SPRK)method to solve the finite-dimensional Hamiltonian system for conserving total energy and structure of the system.