多线性交换子Tb(f)(x)=∫R^n∏i=1^m(bi(x)-bi(y))k(x,y)f(y)dy在L^p(R^n)(1〈p〈∞上是有界的,而K是一个标准的Calderon—Zygmund核.主要研究交换子My(x)=sup s∈Q 1/|Q|fQ|f(y)|dy,其中f∈Lloc(R^n),x∈R^n,Q是任何包含x的方体,并用Sharp极大估计得到了该多线性交换子在Herz空间的一个加权有界性.
The multilinear commuators defined as Tb(f)(x)=∫R^n∏i=1^m(bi(x)-bi(y))k(x,y)f(y)dy bounded in L^p(R^n)(1〈p〈∞), where K is a standard Calder6n-Zygmund kenerl. The commutator opera tor M f( x )=sup s∈Q 1/|Q|fQ|f(y)|dy, where f∈Lloc(R^n),x∈R^n,Q be any cube which contains x,and associatedto multilinear singular intergals in BMO (R^n) , it is obtained that a weighted norm inequalities, the weighted boundedness forthe commutators of multilinear operators are proved.