本文研究了在一般topos中内蕴Heyting代数对象的性质.利用范畴的态射及伴随的方法,获得了内蕴Heyting代数对象为内蕴分配格结果,推广了集合范畴中的对应结果.
In this article, we investigate some properties of internal Heyting algebra objects in a topos. By the method of adjoint in category, we prove that an internal Heyting algebra object is an internal distributive lattice.