位置:成果数据库 > 期刊 > 期刊详情页
基于优化策略的不确定数据流预测方法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京中医药大学信息技术学院,南京210046, [2]南京中医药大学中医药研究院,南京210046
  • 相关基金:国家自然科学基金资助项目(30873449); 南京中医药大学校青年自然科学基金资助项目(09XZR27)
中文摘要:

为解决不确定数据流的预测问题,根据数据流高速、无限和动态不确定性的特点,在复杂人工智能预测和时间序列预测的基础上,提出一种基于优化策略的预测方法。综合考虑数据流中元组的不确定性与不确定异常性,以降低预测计算代价。同时考虑不确定的统计特性对卡尔曼滤波预测的影响,对Q和R进行异步优化估计,以形成最佳状态预测。实验结果表明,该方法的预测性能较好。

英文摘要:

On account of data stream for high speed,unlimited and dynamic characteristics of uncertainty,sophisticated artificial intelligence forecasting methods and the rapidness of times series forecasting method is used.A forecast method foruncertain data streams based on optimal policy that combines data stream tuples uncertainty and uncertainty abnormality for reducing the computational cost of forecast is proposed.Taking into account the statistical properties of the Kalman filteing prediction uncertainty on the impact of Q and R,Q and R are estimated by the innovation based asynchronous adaptive estimated at the same time.Experimental results on actual data source show that this method can adapt to the uncertain of data streams well and provide precise instantaneous detection under certain conditions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139