位置:成果数据库 > 期刊 > 期刊详情页
基于多维复杂度的精神分裂症脑磁信号区分
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:R318[医药卫生—生物医学工程;医药卫生—基础医学]
  • 作者机构:[1]南京邮电大学电子科学与工程学院,南京210023, [2]江苏省射频集成与微组装工程实验室,南京210023
  • 相关基金:国家自然科学基金(No.61271334).
中文摘要:

为了更有效地识别脑磁信号,提出一种基于多维复杂度的脑磁信号分类方法。首先提取信号的AR模型系数、频带能量、近似熵和Lempel-Ziv复杂度作为特征。然后运用增L减R搜索算法结合距离准则选择通道。最后采用遗传算法选择特征子集,分别运用BP神经网络和SVM分类器检测特征子集的性能并对信号分类。实验结果表明精神分裂症患者的近似熵和Lempel-Ziv复杂度都高于正常人,患者的脑磁信号可能更加复杂。增L减R搜索算法选择的通道大多分布在颞叶区,即颞叶区域的通道可能携带了更多的差异信息。采用BP神经网络和SVM对特征数据分类,分别得到了98.5%和99.75%的正确率。

英文摘要:

In order to classify the MEG signal more efficiently, an approach based on multidimensional complexity is proposed for MEG signal classification. First, several features including Autoregressive(AR)model parameters, band power, approximate entropy, Lempel-Ziv complexity are extracted from MEG signals. Then, plus-L minus-R(LRS)techniques combined with distance principle are employed to select informative channels. After channel selection, the best features are selected using Genetic Algorithm(GA), classifiers including BP neural networks and Support Vector Machine(SVM) are used to classify the reduced feature set of the two groups. The results show that the approximate entropy and Lempel-Ziv complexity of schizophrenic are higher, it is suggested that the MEG signal is more complex. The interesting point is that most of selected channels are located in the temporal lobes, it means that the selected channels in the temporal lobes carry more discriminative information. A classification accuracy of 98.5% and 99.75% is obtained by BP neural networks and SVM respectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887