位置:成果数据库 > 期刊 > 期刊详情页
基于信息熵的主动学习半监督分类研究
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]扬州大学信息中心,江苏扬州225009
  • 相关基金:基金项目:国家自然科学基金(60673060)
中文摘要:

针对小规模训练样本不足以支持学习器对含有大量潜在不确定因素的未标样本集分类的问题,提出了一种基于信息熵的主动学习方法,引入信息熵的离散事件概率估计理论,通过对未标文档熵值的计算,结合二阶段学习策略,主动学习利用现有知识,结合实验样本环境,主动地选取最有可能的解决问题的样本并标注它们的类别,获得新的参数,重新训练分类器,选择最有利分类器性能的样本,迭代直到未标样本集为空。实验结果表明,该方法取得了较好的分类效果。

英文摘要:

Most of supervised machine learning methods led to poor performance when work on limited tagged data. Investigated a novel semi- supervised learning method based on active learning with information entropy. An optimization strategy of selecting part of instances from unlabeled examples for classifying in each iteration, based on active learning from unhbeled examples, was presented. The experiment results show that our method achieve high performance on small tagged data.

同期刊论文项目
期刊论文 105 会议论文 50 专利 1
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263