位置:成果数据库 > 期刊 > 期刊详情页
基于聚类和分段优化的蚁群算法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京工业大学多媒体与智能软件技术北京市重点实验室,北京100022
  • 相关基金:国家自然科学基金资助项目(60496322);北京市教育委员会科技发展资助项目(KM200610005020).
中文摘要:

针对蚁群算法在求解大规模旅行商问题(TSP)时精度和时间方面的不足,提出了一种新的算法,该算法采用多阶段的蚁群寻优策略.算法的复杂度分析及在大规模TSP问题上的实验表明:该算法在保证获得较好解的前提下收敛速度得到了较大的改进.

英文摘要:

To improve the computation performance of Ant Colony System for solving large scale Traveling Salesman Problems (TSP), a new algorithm is presented in this paper. It adopts a set of multistage strategies to look for an optimal solution. The analysis for computation complexity and experimental results for TSP problems demonstrate that the proposed algorithm can greatly improve the speed of convergence while keeping more optimal solutions.

同期刊论文项目
期刊论文 49 会议论文 47
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924