位置:成果数据库 > 期刊 > 期刊详情页
一种混合的贝叶斯网结构学习算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京工业大学计算机学院多媒体与智能软件技术北京市重点实验室,北京100124
  • 相关基金:国家自然科学基金重大项目(60496322);北京市自然科学基金项目(4083034).
中文摘要:

贝叶斯网是人工智能中一个重要的理论模型,也是现实世界中不确定性问题建模的重要工具。针对贝叶斯网的结构学习问题,提出了一种将约束满足、蚁群优化和模拟退火策略相结合的混合算法。新算法首先利用阂值自调整的条件测试来动态地压缩搜索空间,在加速搜索过程的同时保证学习的求解质量;然后在基于MDL的蚁群随机搜索中引入模拟退火的优化调节机制,改进了算法的优化效率。实验结果验证了所提策略的有效性,与最新的同类算法相比,新算法在保持较快收敛速度的前提下具有更好的求解质量。

英文摘要:

Bayesian networks (BNs) are an important theory model within the community of artificial intelligence, and also a powerful formalism to model the uncertainty knowledge in the real world. Recently, learning a BN structure from data has received considerable attentions and researchers have proposed various learning algorithms. Especially, there are three efficient approaches, namely, genetic algorithm (GA), evolutionary programming (EP), and ant colony optimization (ACO), which use the stochastic search mechanism to tackle the problem of learning Bayesian networks. A hybrid algorithm, combining constraint satisfaction, ant colony optimization and simulated annealing strategy together, is proposed in this paper. First, the new algorithm uses order-0 independence tests with a self-adjusting threshold value to dynamically restrict the search spaces of feasible solutions, so that the search process for ants can be accelerated while keeping better solution quality. Then, an optimization scheme based on simulated annealing is employed to improve the optimization efficiency in the stochastic search of ants. Finally, the algorithm is tested on different scale benchmarks and compared with the recently proposed stochastic algorithms. The results show that these strategies are effective, and the solution quality of the new algorithm precedes the other algorithms while the convergence speed is faster.

同期刊论文项目
期刊论文 49 会议论文 47
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349