位置:成果数据库 > 期刊 > 期刊详情页
融合Ratio边缘信息的水平集SAR图像分割方法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TN957.52[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]西安电子科技大学电子工程学院,陕西西安710071
  • 相关基金:国家自然科学基金资助项目(60672128)
中文摘要:

提出了一种融合边缘和区域信息的变分水平集合成孔径雷达图像分割方法.该方法不需要去除相干斑噪声的预处理过程,利用具有恒虚警特性的Ratio算子提取合成孔径雷达图像的边缘信息,并与无边缘活动轮廓模型结合建立合成孔径雷达图像分割能量泛函模型,通过最小化能量泛函得到曲线演化偏微分方程,采用变分水平集方法求解演化方程,实现了合成孔径雷达图像的分割.分别采用模拟和真实合成孔径雷达图像对该方法进行了验证,实验结果表明,该方法实现了合成孔径雷达图像中目标与-背景的正确分割,具有较好的边缘定位能力.

英文摘要:

A variational level set synthetic aperture radar (SAR) image segmentation method based on edge and region information is proposed. An energy functional adapted for SAR image segmentation is defined, which consists of an active contour without the edge model and the edge information of SAR image by the Ratio operator with CFAR. Partial differential equations (PDE) of curve evolution are obtained by minimization of the energy functional. To implement image segmentation, the solution of the PDEs by a variational level set approach is applied. The performance of the method is verified by both synthetic and real SAR images. It is shown that the method can accurately extract targets from the SAR image but without any despeckle step, which possesses a preferable edge accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591