位置:成果数据库 > 期刊 > 期刊详情页
一种全局最优的非匀质图像分割算法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学计算机学院,陕西西安710071, [2]西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071
  • 相关基金:国家自然科学基金资助项目(60672128)
中文摘要:

为了解决传统几何活动轮廓模型不能自适应地分割非匀质图像的问题,提出了一种全局优化的非匀质图像分割算法.首先,利用图像经过高斯滤波器滤波后的梯度信息定义了一个新的图像分割能量函数.然后,利用水平集方法扩展该能量函数的定义域,以使该能量函数具有全局最优解.为避免水平集函数的重新初始化过程,在能量函数中引入了一个水平集函数约束项.最后,通过最小化该能量函数,建立水平集函数演化的偏微分方程.对水平集演化方程数值求解,实现对非匀质图像的分割.实验结果表明,该算法不但能自适应地确定曲线演化方向,而且能有效地分割非匀质图像.

英文摘要:

In order to solve the problem that the traditional geometric active contour model can not adaptively segment a non-homogenous image,a global optimization non-homogenous image segmentation algorithm is proposed.Firstly,a new energy function is defined by importing gradient information on the inhomogeneous image which is filtered by the Gaussian filter.Then,the domain of the energy function is extended by the level set method.Thus,the energy function has the solution of global optimization.We introduce a level set function control term for avoiding the re-initialization procedure of the level set function.Finally,a partial difference equation of the level set function evolvement is derived by minimizing the energy function.The non-homogenous image segmentation is implemented by the numerical solution of the partial difference equation.Experimental results show that the proposed algorithm not only can automatically determine the evolvement orientation of the active contour cure,but also can effectively segment non-homogenous images.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591