介绍了实现高能电子轰击阳极表面产生的能量沉积及温度变化的数值模拟理论及方法.构建了一个简单的束发射模型,初步验证了阳极表面电子能量沉积数值计算的准确性.选取四层圆盘锥形磁绝缘传输线中心汇流区为模型,对其工作过程中产生的阳极能量沉积及温度变化进行数值模拟,并将模拟结果与国外相关文献的结论进行了对比,进一步证明了模拟的准确性.对模拟结果进行了分析,探讨了模拟中结果产生的物理机理.
In this paper, we introduce the numerical simulation theory and method to achieve the energy deposition and temperature variation produced by the high-energy electron bombarding the anode surface. A simple beam launch model is developed. The accuracy of the numerical calculation of the anode surface electronic energy deposition is primarily validated. Then, selecting the magnetically insulated transmission line in post-hole convolute as a model, the energy deposition and the temperature variation in the anode produced in the process are simulated. Also by comparing the simulation results with the results given in the literature, the simulation accuracy is further proved. Finally, the simulation results are analyzed and the physical mechanism produced by the simulation results is also discussed.