给出了两类非连通图(K2∨ Cn)^3∪i=1 St(mi) 和 (K2 ∨ C2n+k)∪ St(m)∪Gn-1^(k) (k = 1,2),并证明了如下结论:对自然数n,m,m1,m2,m3,设s = [ n/2],n≥9, m1 ≥s+ 2,则图(K2 ∨ Cn)^3∪i-1 St( mi )是一个优美图;对k = 1,2, 设 n, m ≥ 3,Gn-1^(k) 是一个具有n-1条边的k-优美图,则图(K2 ∨ C2n+k ) U St ( m ) U Gn-1^(k)是一个优美图。其中,K2是一个具有2个顶点的完全图,K2是图K2的补图,K2 ∨ Cn是图K2和n圈Cn的联图,St(m)是一个具有m+1个顶点的星形树。
Two kinds of unconnected graphs (K2∨ Cn)^3∪i=1 St(mi) and (K2 ∨ C2n+k)∪ St(m)∪Gn-1^(k) (k = 1,2) were presented, and following results were proved: for natural number n, m, m1, m2, m3, let s = [ n/2],n≥9, m1 ≥s+ 2, then 3 graph (K2 ∨ C. )^3∪i-1 St( mi ) is a graceful graph; for k = 1,2, let n, m ≥ 3, and let Gn-1^(k) be a k-graceful graph with n - 1 edges, then graph (K2 ∨ C2n+k ) U St ( m ) U Gn-1^(k), is a graceful graph. Where K2 be a complete graph with 2 vertices, K2 is the complement of graph K2, graph K2 ∨ Cn istbe join graph of K2, and n-cycle Cn, St(m) is a star tree with m+ 1 vertices.