证明定义有二元运算→和零元运算(固定元)O的非空集合L(即:L是(2,0)型代数)只要满足四条算律就可成为格蕴涵代数。因此,在定义格蕴涵代数时,我们不必要求L是有界有余格,从L是(2,0)型代数出发即可,这样大大简化了格蕴涵代数的定义。
This paper proved that when we have a binary operation → and a nullary operations 0 on a non-empty set L, if these operations satisfy the four axioms of lattice impfication algebra then (L,→, 0) to be a lattice implication algebra. So, when we define lattice implication algebra, we needn't start on a complemented lattice with universal bounds, but we can begin with an algebra of type (2,0).