本文主要证明了对于n阶二部有向图D,当最小度δ≥3,对任意同部顶点x,y,有min{|N+(x)UN+(y)|,|N-(x)UN-(y)|}≥n+3/4时,D为极大局部边连通的,当最小度δ≥4,对任意同部顶点x,y,有min{|N+(x)UN+(y)|,|N-(x)UN-(y)|}〉n/4+1时,D为超级局部边连通的。我们证明了条件的最好可能性及结果与原有结果的独立性。
We prove that a n-order bipartite digraph D is maximally local-edge-connected if the minimum degree δ≥3 and min{|N+(x)UN+(y)|,|N-(x)UN-(y)|}≥n+3/4for each pair of vertices x and y in the same part, and is super-edge-connected ifδ≥4 and min{|N+(x)UN+(y)|,|N-(x)UN-(y)|}〉n/4+1for each pair of vertices x and y in the samepart. We also prove that the best possibility of the conditions and the independence of the results from the primitive ones.