设G是有限简单无向图,k是正整数.使G—S每个分支的阶不小于k的边割S称为G的k阶限制边割.G的四阶限制边连通度λ4(G)是G的四阶限制边割之中最少的边数.若对于任意边e∈E(G),均有λ4(G—e)=A4(G)-1,则称G是极小四阶限制边连通图.定义ξ4(G)=min{δ(U):U包含V(G),G[U]是四阶连通导出子图},此处δ(U)表示恰好有一个点在U上的边的数目.若λ4(G)=ξ4(G),则称G是λ4最优的.若每个5阶限制边割都孤立出G的一个5阶连通子图,则称G是超级5阶边连通的.笔者给出:极小四阶限制边连通图若不是λ4最优的,则是3正则,围长为5,任意边都关联5圈,且是超级5阶边连通的图.
Let G be a finite, simple and undirected graph, and let k be a positive integer. An edge - cut S of G is called k - restricted if every component of G - S has order at least k. The minimum cardinality of all 4 - restricted edge - cuts is the 4 - restricted edge connectivity of G, denoted by λ4 (G). A graph G is called minimally 4 - restricted edge - connected if λ4 ( G - e) =λ4 (G) - 1 for each edge e ∈ E( G), λ4 - optimal if λ4 (G) = ξ4 (G), where ξ4(G) = min { δ(U) : U belong to V( G), G[ U] is a connected induced subgraph of order 4 of G} ,δ(U) is the number of edges between U and V/ U, and super - λ5 if every minimum 5 - restricted edge - cut isolates a connected induced subgraph of order 5. We show that minimally 4 - restricted edge - connected graphs are λ4 - optimal except for 3 -regular graphs with girth g(G) = 5 ,each edge incident with a 5 -cycle and being super -λ5.