为提高风速预测的准确性,采用卡尔曼滤波方法将ARMA模型和BP神经网络相结合,提出一种混合预测方法。根据时间序列分析理论,利用已知风速序列建立风速序列的自回归预测模型,并以此建立卡尔曼滤波的状态方程和测量方程。再利用BP神经网络的预测结果作为卡尔曼滤波的观测值,通过卡尔曼滤波的递推计算得到未来风速的最优估计值,从而实现风速序列的混合预测。仿真实验结果表明:混合预测方法能够有效改善风速序列的预测性能。与传统卡尔曼滤波预测结果相比,混合预测方法预测结果的延迟现象得到改善,与神经网络预测结果相比,混合预测方法在风速序列极值点的预测误差大大减小。