采用静电纺丝技术将聚苯胺(PANI)和稀土配合物[Tb(BA)3phen]掺杂到高分子材料(PVP)中,制备出一类新型的具有光电双功能的Tb(BA)3phen/PANI/PVP复合纳米纤维.用扫描电子显微镜(SEM)、X射线能量色散谱仪(EDS)、荧光光谱仪及宽频介电松弛谱仪对样品进行了表征.结果表明,复合纳米纤维直径为(331±43)nm.在276 nm紫外光激发下,Tb(BA)3phen/PANI/PVP复合纳米纤维发射出主峰位于491,547和585 nm的绿光,对应Tb3+的5D4→7F6,5D4→7F5和5D4→7F4跃迁.当Tb(BA)3phen∶PANI∶PVP的质量比为15∶10∶100时,复合纳米纤维的荧光发射最强,其电导率随PANI含量的增大而升高,在PANI∶PVP为50%(wt%)时,其电导率在高频(106Hz)下达1.531×10-6S/cm.
A new kind of luminescence-electricity bifunctional Tb(BA)3phen/PANI/PVP composite nanofibers was fabri- cated through doping of polyaniline (PANI) and terbium complex [Tb(BA)3phen] in polyvinyl pyrrolidone (PVP) via elec- trospinning. Scanning electron microscope (SEM), energy dispersive spectrometer (EDS), fluorescence spectrometer and broadband dielectric spectrometer were used to characterize the samples. The results indicated that the average diameter of the Tb(BA)3phen/PANI/PVP composite nanofibers was ca. (3314-43) nm. Under the excitation of 276 nm ultraviolet, Tb(BA)3phen/PANI/PVP composite nanofibers emitted the predominant emission peaks at 491, 547 and 585 nm, corre- sponding to 594→7F6, 5D4→7F5 and 5D4→TF4 transitions of Tb3+, respectively. The strongest emission intensity was acquired when the mass ratios of Tb(BA)3phen, PANI and PVP was 15 : 10 : 100. The electric conductivity of the composite nanofi- bets was increased with the increase of PANI content, and reached 1.531 × 10-6 S/cm in high frequency electric field (106 Hz) when the mass ratio of PANI to PVP was 50%. The luminescent intensity and electric conductivity of Tb(BA)3phen/ PANI/PVP composite nanofibers can be tuned via adding of various amounts of Tb(BA)3phen and PANI into the composite nanofibers. This preparative technique is of universal significance and can be used to fabricate other similar bifunctional lu- minescence-electricity composite nanofibers. This new type bifunctional luminescence-electricity composite nanofibers will have wide applications in many fields due to their excellent fluorescence and conductivity.