位置:成果数据库 > 期刊 > 期刊详情页
支持向量聚类的UUV障碍物孤立点惰性检测
  • ISSN号:1006-7043
  • 期刊名称:哈尔滨工程大学学报
  • 时间:2012.9
  • 页码:1377-1383
  • 分类:TP23[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(51179038);新世纪优秀人才计划资助项目(NCET-10-0053).
  • 相关项目:基于威胁遭遇概率估计的UUV非结构化决策与规划问题研究
中文摘要:

针对UUV避碰声呐探测障碍物过程中数据的弱可观问题,提出了基于支持向量聚类的障碍物孤立点惰性检测方法.利用基于支持向量的聚类算法将声呐探测的数据划分为噪声点,低威胁障碍物和威胁障碍物.由于噪声点和低威胁障碍物不会对UUV的航行造成威胁,所以根据其分布的随机性特点将其作为孤立点进行检测.为了避免探测数据的过早判定导致的对障碍物的过度估计及误判,提出了惰性算法来降低由原始数据的弱可观性和声呐的过度敏感性所带来的障碍物误判的概率.通过仿真试验和海试数据验证表明了该方法对障碍物数据中孤立点检测的有效性.

英文摘要:

An algorithm of outlier inertia detection of obstacles based on support vector clustering was proposed in order to handle the inaccurate data from sonar. Based on the algorithms of original data clustering findings, the study will explore support vector clustering, which is divided into three groups: noise, non- menacing obstacle and menacing obstacle. Noise and the non-menacing obstacle are no threat to underwater unmanned vehicle (UUV) during navigation and are the distributions of stochastic, therefore, classifying it as the outlier. The inertia algo- rithm avoids the premature use of the data measured by sonar and can decrease the probability of misjudgment for the obstacle induced by the incomplete orignal data. The simulation and the validation support the research derived from data from sea trial effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823