在一定的约束条件下,提出并证明误分类代价敏感SVM(MC-SVM)与一类基于规则的FIS的函数具有等效性.在此基础上,提出了基于MC-SVM学习过程的FIS(MC-MBFIS)的设计方法.MC-MBFIS继承了基于规则的FIS的显式推理能力,也继承了MC-SVM的代价敏感性.Benchmark数据实验表明,MC-MBFIS能降低平均误分类代价.
Under some restrictions,the functional equivalence between misclassification cost-sensitive support vector machines(MC-SVM) and rule-based fuzzy inference system(FIS) is proposed. Then based on the learning mechanism of MC-SVM,the algorithm of designing a rule-based FIS,misclassification cost-sensitive mercer binary FIS (MC-MBFIS),is given. The MC-MBFIS algorithm has the good generalization ability,can avoid the "curse of dimension" ,and has the transparent inference ability. Experimental results based on a few benchmark data sets show that the MC-MBFIS algorithm can reduce the average misclassification cost.