位置:成果数据库 > 期刊 > 期刊详情页
基于特征选择的过抽样算法的研究
  • ISSN号:1000-0801
  • 期刊名称:《电信科学》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国矿业大学信息与电气工程学院,徐州221008, [2]中国计量学院信息工程学院,杭州310018
  • 相关基金:国家自然科学基金资助项目(No.60842009,No.60905034,No.60974126).浙江省自然科学基金资助项目(No.Y1110342)
中文摘要:

为了提高不平衡数据集分类中少数类的分类精度,提出了基于特征选择的过抽样算法。该算法考虑了不同的特征列对分类性能的不同作用,首先对训练集进行特征选择,选出一组特征列,然后根据选出的特征列合成少数类样本,合成的每个少数类样本的特征由两部分组成,一部分是特征选择的特征列对应的特征,另一部分是按照SMOTE原理合成的特征。将基于特征选择的过抽样算法和SMOTE算法进行实验比较,结果表明基于特征选择的过抽样算法的性能优于SMOTE算法.能有效降低数据的不平衡性,提高少数类的分类精度。

英文摘要:

To significantly improve the classification performance of the minority class, we present an over-sampling method based on feature selection. Firstly, feature selection is performed on the training data set in order to select a set of key colmnns. Then minority class samples are produced using selected key columns, and each sample consists of two kinds of features. One type of features is characteristic value that is corresponding to the selected key columns, the others is generated according to the principle of SMOTE. Comparing to SMOTE algorithm, results show that the new method performs better than SMOTE, and it can effectively reduce the imbalance of data and improve the classification accuracy of the minority class.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电信科学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会 人民邮电出版社
  • 主编:韦乐平
  • 地址:北京市丰台区成寿寺路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:dxkx@ptpress.com.cn
  • 电话:010-81055443
  • 国际标准刊号:ISSN:1000-0801
  • 国内统一刊号:ISSN:11-2103/TN
  • 邮发代号:2-397
  • 获奖情况:
  • 获第二届全国优秀科技期刊评比三等奖(1997年),获中国科协优秀科技期刊二等奖(1997年),在第四次邮电科技期刊质量检查评比中荣获优秀科技...,国家新闻出版总署将《电信科学》列为“中国期刊方...,获第三届中国科技优秀科技期刊奖三等奖(2002年),在第五次通信行业科技期刊质量检查评比中荣获优秀...,在第六次通信行业科技期刊质量检查评比中荣获优秀...,2008年再次入选《中文核心期刊要目总览》,2009年入选中国科技论文统计
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12435