位置:成果数据库 > 期刊 > 期刊详情页
n-words模型下Hesse稀疏表示的图像检索算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西北工业大学理学院,西安710129
  • 相关基金:国家自然科学基金(61201323)
中文摘要:

论文针对视觉词袋(BOVW)模型放弃图像空间结构的缺点,提出一种基于Hesse稀疏编码的图像检索算法。首先,建立n-words模型,获得图像局部特征表示。n-words模型由一系列连续视觉词获得,是图像特征的一种高级描述。该文从n=1到n=5进行试验,寻找最恰当的n值;其次,将二阶Hesse能量函数融入标准稀疏编码的目标函数,得到Hesse稀疏编码公式;最后,以获得的n-words序列作为编码特征,利用特征符号搜索算法求解最优Hesse系数,计算相似度,返回检索结果。实验在两类数据集上进行,与BOVW模型和已有的算法相比,新算法极大地提高了图像检索的准确率。

英文摘要:

To deal with the problem that the Bag-Of-Visual-Words(BOVW) model discards image spatial structure, a new method based on the Hessian sparse coding for image retrieval is introduced. First, the n-words model is built in order to obtain the local feature representation. The n-words model can establish a high-level description using a series of visual word sequences to represent an image. The experiments are performed from n=1 to n=5 to seek the proper n. Second, the Hessian sparse coding formulation is acquired by incorporating the Hessian energy function into the standard sparse coding formulation. Finally, using the obtained n-words sequences as the encoding features, the optimal Hessian coefficients are calculated through the feature-sign search algorithm. The similarity is computed and the retrieval results are returned. The experiments are performed on the two datasets, the results show that the proposed new method for image retrieval outperforms the BOVW model and existent methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739