本文研究了如下问题:-div(|x|β△u)=|x|^a|u|^2(α,β)-2u+λ|x|σ|u|^q-2,x∈Ω,u=0,x∈δΩ,这里Ω∪→R^N是有界光滑区域且0∈Ω,2(α,β)=2(N+α)/N+β-2,运用Sobolev-Hardy不等式和山路几何,证明了在一定的条件下方程至少存在一个非平凡解。
In this paper, we deal with the following problem -div(|x|β△u)=|x|^a|u|^2(α,β)-2u+λ|x|σ|u|^q-2,x∈Ω,u=0,x∈δΩ,where Ω∪→R^N is a smooth bounded domain and 0∈Ω,2(α,β)=2(N+α)/N+β-2 Under certain condition, there proves the existence of at least one nontrivial solution for the equation by Sobolev-Hardy inequality and the mountain pass geometry.