位置:成果数据库 > 期刊 > 期刊详情页
社交网络中基于分类属性的好友推荐
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:国家重点基础研究发展计划(No.2012CB316200); 国家自然科学基金(No.61003046,No.61111130189,No.60933001); 国家高技术研究发展计划(863)(No.2012AA011004); 国家博士后基金(No.20090450126,No.201003447); 教育部博士点基金(No.20102302120054)
中文摘要:

社交网络经常通过掌握的用户信息来对其进行好友推荐。这种好友推荐带来了技术挑战,现有的好友推荐技术并不能有效解决该问题。为了应对这种技术挑战,拟提出基于分类属性的好友推荐算法。通过机器学习的手段,分析出不同类型的属性对用户行为的贡献度不同,将其进行分类处理。基于该分类,提出的算法可以在掌握用户基本资料以及近期行为的基础上,搜索出与之相关性更强的好友或能够引发其兴趣点的商品,用来快速、准确、全面地得到用户与其好友之间亲疏程度排序及分类的结果。实验结果证明了所提出方法的有效性及高效率。

英文摘要:

Social network recommends friends according to the information of the users. This problem brings technical challenges. Current technologies cannot solve this problem effectively. Facing the challenges, this paper proposes a recom-mendation algorithm based on the classification of properties. It analyzes the contributions of different types of properties to users’behavior by machine learning and classifies the types of results. Based on the classifications, it proves the algo-rithm can find more relevant friends or the merchandise which are more likely to arouse users’interest so as to acquire the classification as well as the degree of closeness between users and their friends more correctly, rapidly and comprehen-sively. This paper validates the effectiveness and the efficiency of proposed algorithms with extensive experiments.

同期刊论文项目
期刊论文 108 会议论文 33
期刊论文 24 会议论文 15 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887