位置:成果数据库 > 期刊 > 期刊详情页
H-(反)对称矩阵的广义特征值反问题
  • 期刊名称:兰州理工大学学报
  • 时间:0
  • 页码:139-142
  • 分类:O241.6[理学—计算数学;理学—数学]
  • 作者机构:[1]西安建筑科技大学理学院,陕西西安710055
  • 相关基金:国家自然科学基金(10971160),陕西省教育厅科学研究计划基金(1IJK0503)
  • 相关项目:基于广义格林关系的半群代数理论及应用
中文摘要:

讨论H矩阵的性质,给出H-对称矩阵和H-反对称矩阵的结构,证明若x是H-对称矩阵或H-反对称矩阵A-λB的特征向量,则工是H-对称向量或H-反对称向量,或者x可以由H-对称向量及H-反对称向量线性表示,并根据A-λB的特征向量的上述特点,得到H-对称矩阵和H-反对称矩阵的广义特征值反问题AX=BXA解的表达式.

英文摘要:

Properties of H-matrices were discussed, the structures of H-symmetric and H-antisymmetric matrices were given, and it was proven that when x was an eigenvector of H-symmetric matrices or H-anti- symmetric matrices A-λB, x would be either an H-symmetric vector, or H-antisymmetric vector, or x could be expressed by linear combination of H-symmetric vector with H-antisymmetric vector. Based on a- bove-mentioned feature of eigenvector of A-λB, the expression of solution to inverse problem AX=BXA of generalized eigenvalue of H-symmetric matrices and H-antisymmetric matrices were obtained.

同期刊论文项目
同项目期刊论文