对x=(X1,X2,…,xn)∈(0,1)^n和r∈{1,2,…,n),定义对称函数Fn(x,r)=Fn(x1,x2,…,xn;r)=∏1≤i1〈i2〈…ir≤n j=1 ∑^r(1+xij/1-xij)^1/r,其中i1,i2,…,ir是整数.该文证明了Fn(x,r)是(0,1)^n上的Schur凸、Schur乘性凸和Schur调和凸函数.作为应用,利用控制理论建立了若干不等式.
For x=(X1,X2,…,xn)∈(0,1)^n and r ∈ {1, 2,..., n}, the symmetric function Fn(x, r) is defined by Fn(x,r)=Fn(x1,x2,…,xn;r)=∏1≤i1〈i2〈…ir≤n j=1 ∑^r(1+xij/1-xij)^1/r where ii,i2,...,ir are integers. In this paper, it is proved that Fn(x,r) is Schur convex, Schur multiplicatively convex and Schur harmonic convex on (0, 1)n. As applications, some inequalities are established by use of the theory of majorization.