位置:成果数据库 > 期刊 > 期刊详情页
基于标准编码的频繁子图挖掘算法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
  • 相关基金:基金项目:国家自然科学基金项目(60673136)资助;河北省教育厅2009年自然科学研究计划项目(2009101)资助.
中文摘要:

频繁子图挖掘是图挖掘的一个重要研究课题.gSpan算法作为一种高效的子图挖掘算法具有较好的执行效率,它通过最右扩展生成频繁子图,但不能保证每次扩展得到的均为标准编码.针对此问题本文提出了一种改进的算法CSGM,它采用ADI++存储结构,能处理更大规模的图集,同时保证每次最右扩展均生成标准编码,既避免了对非标准编码图的支持度计算,也避免了对输入编码是否为标准编码的计算.在实际数据集上运行的实验结果表明它比原算法提高了挖掘效率.

英文摘要:

Frequent graph mining is an important research subject of graph mining. As an efficient algorithm for subgraph mining, the gSpan has better efficiency through fight-most extension to generate frequent subgraph. But it can't guarantee each extension is a canonical code. An improved algorithm called CSGM is proposed in this paper to resolve the existing problem. It can deal with larger graph dataset through using the ADI + + storage structure and guarantee that each extension is a canonical code. The advantage is that it not only avoids the calculation of the support of the non-canonical code graphs but also the calculation of whether an input code is a canonical code. The experimental result on real datasets shows that the new algorithm improves the efficiency of mining.

同期刊论文项目
期刊论文 41 会议论文 4
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212