位置:成果数据库 > 期刊 > 期刊详情页
基于分割图集的频繁闭图挖掘算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南城建学院计算机科学与工程系,河南平顶山467036, [2]燕山大学信息科学与工程学院,河北秦皇岛066004
  • 相关基金:基金项目:国家自然科学基金资助项目(60673136);河南省重点科技攻关资助项目(092102210251)
中文摘要:

为了解决大规模图集挖掘算法PartGraphMining必须重复扫描图集才能得到全部频繁子图的缺点,提出了一种改进的IPMC算法,通过hash表保存同构图的hash地址和支持度,不必重复扫描图集就可快速得到釜部频繁子图,再经过少量的子图同构判断得到全部频繁闭图。在实际数据集上运行的实验结果表明它比原算法的挖掘效率有所提高。

英文摘要:

In order to solve the shortage of the PartGraphMining algorithm for mining large-scale graph databases must repeatedly scan the database that could get all frequent subgraph patterns, this paper proposed a new algorithm IPMC. It could get all frequent subgrapb patterns quickly without scanning the database repeatedly through storing graph' s hash address and supportting in the hash table. Furthermore, obtained all closed frequent graph patterns by the judgement of few subgraph isomorphism. The experimental result on real datasets shows that new algorithm improves the efficiency of mining.

同期刊论文项目
期刊论文 41 会议论文 4
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049