本文讨论了如下一类非线性薛定谔方程:-△u+V(x)u=f(u),x∈R^N,在H^1(R^N)中无穷多解的存在性,其中N≥3,V(x)是RN上的实值连续函数并且满足对(A)x∈R^N,V(z)≥V0>0.
In this paper,we show that the nonlinear Schrodinger equation -△u+V(x)u=f(u),x∈R^N,where N〉3 and the potential V(x) is a continuous function satisfying V(x)≥V0〉0 for all x∈ R^N,possesses infinitly many solutions in H^1(RN).