本文研究了具有拟周期外力作用的时滞波方程解的长时间性态,利用斜积半流方法,在扩展相空间中将非自治系统提升成自治系统,利用算子半群理论及Lyapunov—Perron方法在一定的谱间隙条件和充分小的时滞假设下,证明了拟周期半线性时滞波方程惯性流形的存在性。
The present paper deals with the long-time behavior of delayed semilinear wave equations with quasi-periodic terms. Using skew-product method ,the non-autonomous systems are lifted into the autonomous systems in the extened phase space Ca × T^k. Under some assumptions of delay time and the spectral gap condition, the existence of inertial manifolds is provided by Lyapunov-Perron method.