该文建立了关于单形宽度的杨路、张景中不等式的一个逆不等式.作为凸体宽度不等式的应用,得到了凸体的截面和投影的一些估计式.
In this paper the authors establish the following inverse inequality of Yang-Zhang's inequality for the width of a simplex: Let Ω be an n-dimensional simplex with volume Voln(Ω), width w(Ω), and facet areas S1, S2,…, Sn+l respectively, then w(Ω)≥rn·Voln(Ω)/max(Si)1≤i≤n+1, where γn={2n/n+1,for odd n;2,for even n. As applications, the authors show some inequalities for orthogonal projections and sections of convex bodies.