这篇论文论述一个新奇方法,它由考虑提高外部机制的使用一多传感器系统,声纳和一个电荷耦合器件照相机镇静。单眼用的视觉关于声纳传感器检测的几何实体的地点提供冗余的信息。显著地减少歧义,一改善,更多的详细声纳模型被利用。而且, Hough 变换被用来从未加工的声纳数据和视觉图象提取特征。信息在特征的水平被熔化。这种技术显著地改进为活动机器人为同时的本地化和地图大楼问题使用的环境观察的可靠性和精确。试验性的结果验证这条途径的有利表演。
This paper presents a novel method, which enhances the use of external mechanisms by considering a multisensor system, composed of sonars and a CCD camera. Monocular vision provides redundant information about the location of the geometric entities detected by the sonar sensors. To reduce ambiguity significantly, an improved and more detailed sonar model is utilized. Moreover, Hough transform is used to extract features from raw sonar data and vision image. Information is fused at the level of features. This technique significantly improves the reliability and precision of the environment observations used for the simultaneous localization and map building problem for mobile robots. Experimental results validate the favorable performance of this approach.