位置:成果数据库 > 期刊 > 期刊详情页
基于稀疏矩阵字典的移动用户行为识别方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安邮电大学计算机学院,西安710121
  • 相关基金:基金项目:国家自然科学基金资助项目(61373116);西安邮电大学青年教师科研基金资助项目(ZL2014-29)
中文摘要:

通过手机内置加速度传感器数据对人类日常行为进行识别具有便捷、实时、无干扰的优点,为了提高识别的准确率和稳定性,提出一种基于加速度特征稀疏矩阵字典的分类方法识别行为。从不同行为的多个训练样本构造出一个过完备字典,基于该字典通过求解最小z,范数得到待识别样本的稀疏系数,根据稀疏系数计算待识别样本对应不同行为的残差并选取最小值对应的行为作为分类结果。实验表明该方法识别手机用户日常行为可以达到84.93%的准确率,高于传统的决策树和BP神经网络算法的分类准确率,且分类稳定性也优于传统分类方法。

英文摘要:

Recognizing human daily behaviors with the data sampled from mobile phones' buih-in accelerometer is conve- nient,real-time, and non-interferential. In order to improve the accuracy and stability of recognition, this paper proposed a classification method based on sparse matrix dictionary of acceleration features. It constructed an over-comprehensive dictionary by training samples of different kinds of activities firstly. And then it calculated the sparse coefficient for samples to be tested by solving the minimum 11 norm. At last,it calculated residual values according to the activities and selected the minimum one as the indicator to obtain the classification results. Experiments show. that this method can reach a recognition rate of 84.93% for recognizing mobile phone users' daily behaviors ,which is higher than the recognition rate obtained by traditional classifica- tion algorithms, such as decision tree and BP neural network. At the same time, the stability of classification of this method is also superior to the traditional classifications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049