位置:成果数据库 > 期刊 > 期刊详情页
基于增强稳定组模型的移动P2P网络信任评估方法
  • ISSN号:0254-4164
  • 期刊名称:《计算机学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中兴通讯股份有限公司,陕西西安710114, [2]西安邮电大学计算机学院,陕西西安710121
  • 相关基金:国家自然科学基金资助项目(61373116);陕西省科技统筹创新工程计划项目(2016KTZDGY04-01)
作者: 吴旭[1,2]
中文摘要:

随着智能手机用户数量的逐年增长,很多情景感知相关的研究也逐步开展。基于智能手机的人体行为识别已成为用户自适应感知服务中的重要研究课题。尽管有很多研究者已经尝试使用移动设备进行用户行为识别,但依旧难于从不确定的、不完整的以及不充足的移动设备传感器数据中推测出用户的行为。文中提出一种基于自动标签机制的人体行为识别模型迁移方法,利用集成学习分治思想以及深度学习网络(MLP)构建自动标签系统对新用户数据进行打标签,将打完标签的数据划归到通用模型的训练集中进行重新训练,以此完成模型迁移。实验结果表明,迁移学习后的行为识别模型能有效提高行为识别准确率。

英文摘要:

With the number of smart phone users increasing, a lot of context aware research is gradually carried out. Human behavior recognition based on smart phone has become an important research topic in user adaptive sensing service. Although there are a lot of researchers have tried to use mobile devices for user behavior recognition, But it is still difficult to recognize the user's behavior from the uncertainty, incomplete and inadequate sensor data of the mobile device. In this paper, a method of human behavior recognition model migration based on automatic tagging mechanism is proposed, Using the ensemble learning partition thought and deep learning network (MLP) construction of automatic labeling system on the new user data playing tag, The finished tag data transferred to the general model of training for retraining, in order to complete the model migration. The experimental results show that the model can effectively improve the accuracy of behavior recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433