位置:成果数据库 > 期刊 > 期刊详情页
小波分解在移动用户行为识别中的应用
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:西安邮电大学计算机学院,西安710121
  • 相关基金:国家自然科学基金项目(61373116); 陕西省教育科学“十二五”规划课题(SGH140601); 陕西省教育厅专项科研计划项目(16JK1706)
中文摘要:

针对目前行为识别通用模型对步行、上楼、下楼等易混淆行为识别准确率较低的情况,提出了一种基于小波分解的移动用户行为识别方法,从小波分解后不同频率子信号的低频近似系数中提取小波能量、小波峰个数和平均波峰幅值等特征,基于决策树分类器建立与用户无关的行为识别通用模型.分别用典型时域特征数据集和小波特征数据集对该通用模型进行验证.实验结果表明,采用新方法后,3种易混淆行为的平均识别准确率提高了14.82%,减少了误判.

英文摘要:

For case of low recognition accuracy when using universal model to distiguish confusing human behaviors such as walking,going upstairs and downstairs,a mobile user behavior recognition method based on wavelet decomposition was proposed. It extracts the wavelet energy distribution,the number of wavelet peak and the everage wavelet peak amplitude from the sub-signals generated by wavelet decomposition,and also the decision tree classifier is used to build the user-independent behavior recognition model. The typical time-domain feature dataset and wavelet feature dataset were respectively used to train and test the universal model. Experiments show that the proposed method improves the average accuracy about 14. 82% of the three confusing behaviors,and reduces the possibility of misjudgment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684