位置:成果数据库 > 期刊 > 期刊详情页
基于词向量特征的循环神经网络语言模型
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:2015.4
  • 页码:299-305
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国人民解放军信息工程大学 信息系统工程学院,郑州450001
  • 相关基金:国家863计划项目(No.2012AA011603)、国家自然科学基金项目(No.61175017)资助
  • 相关项目:基于分段条件随机场的连续语音识别技术
中文摘要:

循环神经网络语言模型能解决传统N-gram模型中存在的数据稀疏和维数灾难问题,但仍缺乏对长距离信息的描述能力。为此文中提出一种基于词向量特征的循环神经网络语言模型改进方法。该方法在输入层中增加特征层,改进模型结构。在模型训练时,通过特征层加入上下文词向量,增强网络对长距离信息约束的学习能力。实验表明,文中方法能有效提高语言模型的性能。

英文摘要:

The recurrent neural network language model( RNNLM) solves the problems of data sparseness and dimensionality disaster in traditional N-gram models. However, the original RNNLM is still lack of long dependence due to the vanishing gradient problem. In this paper, an improved method based on contextual word vectors is proposed for RNNLM. To improve the structure of models, a feature layer is added into the input layer. Contextual word vectors are added into the model with feature layer to reinforce the ability of learning long-distance information during the training. Experimental results show that the proposed method effectively improves the performance of RNNLM.

同期刊论文项目
期刊论文 85 会议论文 9 获奖 2 著作 1
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169