位置:成果数据库 > 期刊 > 期刊详情页
基于声学分段模型的无监督语音样例检测
  • ISSN号:1004-9037
  • 期刊名称:《数据采集与处理》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:解放军信息工程大学信息系统工程学院,郑州450001
  • 相关基金:国家自然科学基金(61175017)资助项目。
中文摘要:

提出一种基于声学分段模型的无监督语音样例检测方法。该方法首先利用高斯混合模型(Gaussian mixture model ,GMM)将训练数据频谱参数转换为后验概率特征向量,采用层次聚类算法确定后验概率的边界信息,得到声学分段;然后通过k‐m eans算法将片段聚类并添加标签,构建基于后验概率的声学分段模型。检索时以模型对查询样例与检索文档的解码序列代替测量矩阵以降低检索时间,通过基于最小编辑距离的动态匹配检索查询项,最小编辑距离的代价函数由模型相似度距离矩阵修正。实验结果表明,相比GM M及传统声学分段模型,本文提出的方法性能更好,检索速度得到显著提升。

英文摘要:

A study of acoustic segment models (ASM s) for unsupervised query‐by‐example spoken term detec‐tion is presented .Firsty ,a Gaussian mixture model(GMM) is trained without any transcription information to label speech frames with Gaussian posteriorgram .Hierarchical agglomerative clustering is used to decompose the posterior features into acoustically exhibiting segments .A label is assigned to each result segment by k‐means clustering ,then posteriorgram is faciltitated to train ASMs .In query matching phase ,Viterbi decode is proposed to represent query and test posteriorgrams as ASM sequences .Dynamic match lattice spotting based on minimum edit distance is used to locate possible occurrences of the query term .Experimental results show that the proposed method outperforms traditional GMM and ASMs tokenizers .

同期刊论文项目
期刊论文 85 会议论文 9 获奖 2 著作 1
同项目期刊论文
期刊信息
  • 《数据采集与处理》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会 仪器仪表学会 信号处理学会 中国一汽仪表学会 中国物理学会 微弱信号检测学会 南京航空航天大学
  • 主编:贲德
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:sjcj@nuaa.edu.cn
  • 电话:025-84892742
  • 国际标准刊号:ISSN:1004-9037
  • 国内统一刊号:ISSN:32-1367/TN
  • 邮发代号:28-235
  • 获奖情况:
  • 中国科技论文统计源用刊,2007年被评为江苏省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8148