位置:成果数据库 > 期刊 > 期刊详情页
基于循环神经网络语言模型的N-bes t重打分算法
  • ISSN号:1004-9037
  • 期刊名称:《数据采集与处理》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:解放军信息工程大学信息系统工程学院,郑州450002
  • 相关基金:国家自然科学基金(61175017)资助项目;国家高技术研究发展计划(“八六三”计划)(2012AA011603)资助项目;全军军事学研究生课题(2010JY0258-144)资助项目。
中文摘要:

循环神经网络语言模型能够克服统计语言模型中存在的数据稀疏问题,同时具有更强的长距离约束能力,是一种重要的语言模型建模方法。但在语音解码时,由于该模型使词图的扩展次数过多,造成搜索空间过大而难以使用。本文提出了一种基于循环神经网络语言模型的N‐best重打分算法,利用N‐best引入循环神经网络语言模型概率得分,对识别结果进行重排序,并引入缓存模型对解码过程进行优化,得到最优的识别结果。实验结果表明,本文方法能够有效降低语音识别系统的词错误率。

英文摘要:

Recurrent neural network language model (RNNLM ) is an important method in statistical lan‐guage models because it can tackle the data sparseness problem and contain a longer distance constraints . However ,it lacks practicability because the lattice has to expand too many times and explode the search space .Therefore ,a N‐best rescoring algorithm is proposed which uses the RNNLM to rerank the recog‐nition results and optimize the decoding process .Experimental results show that the proposed method can effectively reduce the word error rate of the speech recognition system .

同期刊论文项目
期刊论文 85 会议论文 9 获奖 2 著作 1
同项目期刊论文
期刊信息
  • 《数据采集与处理》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会 仪器仪表学会 信号处理学会 中国一汽仪表学会 中国物理学会 微弱信号检测学会 南京航空航天大学
  • 主编:贲德
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:sjcj@nuaa.edu.cn
  • 电话:025-84892742
  • 国际标准刊号:ISSN:1004-9037
  • 国内统一刊号:ISSN:32-1367/TN
  • 邮发代号:28-235
  • 获奖情况:
  • 中国科技论文统计源用刊,2007年被评为江苏省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8148