位置:成果数据库 > 期刊 > 期刊详情页
基于小波支持向量回归的遥感多光谱图像分辨率增强算法
  • ISSN号:1006-3080
  • 期刊名称:华东理工大学学报
  • 时间:2012.6.30
  • 页码:340-345
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学计算智能与信号处理教育部重点实验室,合肥230039, [2]安徽大学电气工程与自动化学院,合肥230039
  • 相关基金:国家自然科学基金(61172127);安徽省教育厅重点科研计划资助项目(KJ2010A021)
  • 相关项目:仿射不变性和亮度单调变化不变性的图像特征描述
中文摘要:

利用小波支持向量回归,实现了遥感多光谱图像分辨率的增强。首先采用非下采样Contourlet变换对低分辨率的多光谱图像和高分辨率的全色图像进行多分辨率分解,再利用小波支持向量回归对分解系数进行学习和预测,获得分辨率初步提高的多光谱图像,最后再与传统的插值方法得到的结果进行融合来实现多光谱图像分辨率增强。实验结果表明:此方法借遥感全色图像的辅助获得丰富的高频细节信息,使得分辨率增强结果无论是最小均方误差还是峰值信噪比都要优于仅依靠原图像本身放大的传统方法以及其他的分辨率增强方法。

英文摘要:

Wavelet support vector regression is utilized to enhance the resolution for remote sensing multi-spectral image. Firstly, both low resolution multi-spectral image and high resolution panchromatic image are decomposed into multi-resolution by using nonsubsampled contourlet transform. Then, by using wavelet support vector regression, the decomposed coefficients are learned and predicted so as to obtain multi-spectral image with preliminary enhanced resolution. Finally, the above results are further fused with the traditional interpolate one to achieve the resolution enhance of multi-spectral image. Experiment results show that the proposed algorithm utilizes the auxiliary o{ remote sensing panchromatic image to effectively attain a wealth of high-frequency detail information, such that either the minimum mean squared error or the peak signal to noise ratio is superior to these from the traditional methods only depending on the amplification of image itself and other resolution enhance methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华东理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:华东理工大学
  • 主编:刘红来
  • 地址:上海梅陇路130号
  • 邮编:200237
  • 邮箱:ecustxbbzz@ecust.edu.cn
  • 电话:021-64252666
  • 国际标准刊号:ISSN:1006-3080
  • 国内统一刊号:ISSN:31-1691/TQ
  • 邮发代号:4-382
  • 获奖情况:
  • 2001年被国家新闻出版总署评为"中国期刊方阵科技...,2002年获"第五届全国石油和化工行业优秀期刊二等奖",2004年获"全国高校优秀科技期刊二等奖",2006年荣获"首届中国高校优秀科技期刊奖"以及"第...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10083