位置:成果数据库 > 期刊 > 期刊详情页
最小二乘支持向量机用于时间序列叶面积指数预测
  • ISSN号:1007-2276
  • 期刊名称:红外与激光工程
  • 时间:2014
  • 页码:243-248
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]安徽大学计算机智能与信号处理教育部重点实验室, [2]安徽大学电子信息工程学院, [3]中国科学院遥感与数字地球研究所数字地球重点实验室遥感科学国家重点实验室, [4]气象水文空间天气总站
  • 相关基金:国家自然科学基金(61172127,41201354);国家863项目(2012AA12A307);高等学校博士学科点科研基金(20113401110006)
  • 相关项目:仿射不变性和亮度单调变化不变性的图像特征描述
中文摘要:

遥感反演的叶面积指数(LAI)时间序列被广泛应用于气候模拟、作物长势监测等研究。但遥感数据受天气等因素影响,时间序列的LAI数据存在缺失。支持向量机(SVM)是一种有效的数据分类和回归预测工具,而最小二乘支持向量机(LS-SVM)是对SVM的有效改进。以西藏那曲县为例,使用2003-2011年MODIS LAI产品,分别用LS-SVM和SVM两种方法对研究区域2011年LAI时间序列进行预测,并用MODIS原始LAI以及部分地面实验样点值进行验证。结果表明,基于LS-SVM的LAI时间序列预测算法的精度比基于SVM的算法高,从而证明LS-SVM方法能够弥补遥感反演时间序列LAI数据的缺失问题,对提高时间序列的LAI遥感产品质量具有重要意义。

英文摘要:

The multi-temporal leaf area index (LAI) data retrieved from remote sensing images have been widely used in climate simulation, crop growth monitoring and etc. However,there might be some missing data owing to temporal resolution, weather and some other factors. The support vector machine (SVM) is a kind of machine learning algorithm that has excellent properties. The least squares support vector machine (LS-SVM) algorithm is an improved algorithm of SVM. In this paper, the LS-SVM and SVM models were used to predict the LAI time series products of MODIS data of Naqu in year 2011, based on the MODIS LAI from 2003 to 2011. The results show that LS-SVM method performs better than SVM method. Therefore the predicted LAI data is proved to be very supportive for making up for the loss of remote sensing LAI time-series data, the LS-SVM method proposed in this study is significant to improve the quality of the LAI time series remote sensing products.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《红外与激光工程》
  • 中国科技核心期刊
  • 主管单位:中国航天科工集团
  • 主办单位:天津津航技术物理研究所
  • 主编:张锋
  • 地址:天津市空港经济区中环西路58号
  • 邮编:300308
  • 邮箱:irla@csoe.org.cn
  • 电话:022-58168883 /4/5
  • 国际标准刊号:ISSN:1007-2276
  • 国内统一刊号:ISSN:12-1261/TN
  • 邮发代号:6-133
  • 获奖情况:
  • 1996年获航天系统第五次科技期刊评比三等奖,1998年获航天系统第六次科技期刊评比二等奖,1997-2001年在天津市科技期刊评估中被评为一级期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17466