One-dimensional(ID) In2O3(ZnO)m superlattice nanobelts are synthesized by a chemical vapor deposition method.The formation of the In2O3(ZnO)m superlattice is verified by the high-resolution transmission electron microscopy images.The typical zigzag boundaries could be clearly observed.An additional peak at 614 cm-1 is found in the Raman spectrum,which may correspond to the superlattice structure.The study about the electrical transport properties reveals that the In2O3(ZnO)m nanobelts exhibit peculiar nonlinear I-V characteristics even under the Ohmic contact measurement condition,which are different from the Ohmic behaviors of the In-doped ZnO nanobelts.The photoelectrical measurements show the differences in the photocurrent property between them,and their transport mechanisms are also discussed.
One-dimensional(ID) In2O3(ZnO)m superlattice nanobelts are synthesized by a chemical vapor deposition method.The formation of the In2O3(ZnO)m superlattice is verified by the high-resolution transmission electron microscopy images.The typical zigzag boundaries could be clearly observed.An additional peak at 614 cm^-1 is found in the Raman spectrum,which may correspond to the superlattice structure.The study about the electrical transport properties reveals that the In2O3(ZnO)m nanobelts exhibit peculiar nonlinear I-V characteristics even under the Ohmic contact measurement condition,which are different from the Ohmic behaviors of the In-doped ZnO nanobelts.The photoelectrical measurements show the differences in the photocurrent property between them,and their transport mechanisms are also discussed.